Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
2.
Vaccines (Basel) ; 11(3)2023 Feb 23.
Article in English | MEDLINE | ID: covidwho-2282940

ABSTRACT

We previously developed a polysaccharide--RBD-conjugated nanoparticle vaccine which induced protective efficacy against SARS-CoV-2 in a mouse model. Here, we newly developed a vaccine, SCTV01A, by chemically conjugating recombinant SARS-CoV-2 RBD-Fc and PPS14 (Streptococcus pneumoniae serotype type 14 capsular polysaccharide). The immunogenicity and toxicity of SCTV01A were evaluated in animal models. The PPS14 conjugation enhanced the immunogenicity of RBD-Fc in C57BL/6 mice whether formulated with SCT-VA02B or Alum adjuvant. SCTV01A also induced high opsonophagocytic activity (OPA) against S. pneumoniae serotype 14. In addition, SCTV01A stimulated potent neutralizing titers in rhesus macaques and effectively reduced lung inflammation after SARS-CoV-2 infection with neither antibody-dependent enhancement (ADE) nor vaccine-enhanced diseases (VED) phenomenon. Importantly, the long-term toxicity study of SCTV01A in rhesus macaques did not cause any abnormal toxicity and was tolerated at the highest tested dose (120 µg). The existing immunogenicity and toxicological evaluation results have demonstrated the safety and efficacy of SCTV01A, which will be a promising and feasible vaccine to protect against SARS-CoV-2 infection.

3.
Sci China Life Sci ; 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2245518

ABSTRACT

Neutralizing antibodies have been proven to be highly effective in treating mild and moderate COVID-19 patients, but continuous emergence of SARS-CoV-2 variants poses significant challenges. Antibody cocktail treatments reduce the risk of escape mutants and resistance. In this study, a new cocktail composed of two highly potent neutralizing antibodies (HB27 and H89Y) was developed, whose binding epitope is different from those cocktails that received emergency use authorization. This cocktail showed more potent and balanced neutralizing activities (IC50 0.9-11.3 ng mL-1) against a broad spectrum of SARS-CoV-2 variants over individual HB27 or H89Y antibodies. Furthermore, the cocktail conferred more effective protection against the SARS-CoV-2 Beta variant in an aged murine model than monotherapy. It was shown to prevent SARS-CoV-2 mutational escape in vitro and effectively neutralize 61 types of pseudoviruses harbouring single amino acid mutation originated from variants and escape strains of Bamlanivimab, Casirivimab and Imdevimab with IC50 of 0.6-65 ng mL-1. Despite its breadth of variant neutralization, the HB27+H89Y combo and EUA cocktails lost their potencies against Omicron variant. Our results provide important insights that new antibody cocktails covering different epitopes are valuable tools to counter virus mutation and escape, highlighting the need to search for more conserved epitopes to combat Omicron.

4.
Sci China Life Sci ; 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2174848

ABSTRACT

Multivalent vaccines combining crucial mutations from phylogenetically divergent variants could be an effective approach to defend against existing and future SARS-CoV-2 variants. In this study, we developed a tetravalent COVID-19 vaccine SCTV01E, based on the trimeric Spike protein of SARS-CoV-2 variants Alpha, Beta, Delta, and Omicron BA.1, with a squalene-based oil-in-water adjuvant SCT-VA02B. In the immunogenicity studies in naïve BALB/c and C57BL/6J mice, SCTV01E exhibited the most favorable immunogenic characteristics to induce balanced and broad-spectrum neutralizing potencies against pre-Omicron variants (D614G, Alpha, Beta, and Delta) and newly emerging Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5). Booster studies in C57BL/6J mice previously immunized with D614G monovalent vaccine demonstrated superior neutralizing capacities of SCTV01E against Omicron subvariants, compared with the D614G booster regimen. Furthermore, SCTV01E vaccination elicited naïve and central memory T cell responses to SARS-CoV-2 ancestral strain and Omicron spike peptides. Together, our comprehensive immunogenicity evaluation results indicate that SCTV01E could become an important COVID-19 vaccine platform to combat surging infections caused by the highly immune evasive BA.4/5 variants. SCTV01E is currently being studied in a head-to-head immunogenicity comparison phase 3 clinical study with inactivated and mRNA vaccines (NCT05323461).

5.
Virology ; 576: 61-68, 2022 11.
Article in English | MEDLINE | ID: covidwho-2086825

ABSTRACT

SARS-CoV-2 variants have posed significant challenges to the hopes of using ancestral strain-based vaccines to address the risk of breakthrough infection by variants. We designed and developed a bivalent vaccine based on SARS-CoV-2 Alpha and Beta variants (named SCTV01C). SCTV01C antigens were stable at 25 oC for at least 6 months. In the presence of a squalene-based oil-in-water adjuvant SCT-VA02B, SCTV01C showed significant protection efficacy against antigen-matched Beta variant, with favorable safety profiles in rodents. Notably, SCTV01C exhibited cross-neutralization capacity against Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5) in mice, superior to a WT (D614G)-based vaccine, which reinforced our previously published findings that SCTV01C exhibited broad-spectrum neutralizing potencies against over a dozen pre-Omicron variants and the Omicron BA.1 variant. In summary, variant-based multivalent protein vaccine could be a platform approach to address the challenging issues of emerging variants, vaccine hesitancy and the needs of affordable and thermal stable vaccines.


Subject(s)
COVID-19 , Viral Vaccines , Mice , Humans , Animals , SARS-CoV-2/genetics , Vaccines, Combined , Viral Vaccines/genetics , Squalene , COVID-19/prevention & control , Antibodies, Viral , Water , Antibodies, Neutralizing
6.
Virology ; 2022.
Article in English | EuropePMC | ID: covidwho-2034495

ABSTRACT

SARS-CoV-2 variants have posed significant challenges to the hopes of using ancestral strain-based vaccines to address the risk of breakthrough infection by variants. We designed and developed a bivalent vaccine based on SARS-CoV-2 Alpha and Beta variants (named SCTV01C). SCTV01C antigens were stable at 25 oC for at least 6 months. In the presence of a squalene-based oil-in-water adjuvant SCT-VA02B, SCTV01C showed significant protection efficacy against antigen-matched Beta variant, with favorable safety profiles in rodents. Notably, SCTV01C exhibited cross-neutralization capacity against Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5) in mice, superior to a WT (D614G)-based vaccine, which reinforced our previously published findings that SCTV01C exhibited broad-spectrum neutralizing potencies against over a dozen pre-Omicron variants and the Omicron BA.1 variant. In summary, variant-based multivalent protein vaccine could be a platform approach to address the challenging issues of emerging variants, vaccine hesitancy and the needs of affordable and thermal stable vaccines.

7.
Pharm Res ; 39(9): 2191-2201, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1959062

ABSTRACT

PURPOSE: Neutralizing antibodies, administrated through intravenous infusion, have shown to be highly efficacious in treating mild and moderate COVID-19 caused by SARS-CoV-2 infection in the lung. However, antibodies do not transport across the plasma-lung barrier efficiently, and up to 100 mg/kg dose was used in human causing significant supply and cost burdens. This study was to explore the feasibility of nebulized antibodies inhalation delivery as an alternative route. METHODS: HB27, a potent RBD-specific humanized monoclonal antibody (Zhu et al. in National Sci Rev. 8:nwaa297, 2020), showed excellent protection against SARS-CoV-2 in animal model and good safety profile in clinical studies. The pharmacokinetics and preliminary safety of HB27 administrated through the respiratory tract were studied in mice and cynomolgus monkeys here. RESULTS: At a single 5 mg/kg dose, the peak HB27 concentration in mice pulmonary epithelial lining fluid (ELF) reached 857.8 µg/mL, 670-fold higher than the PRNT90 value of 1.28 µg/mL, and maintained above PRNT90 over 240 h. In contrast, when administrated by intravenous injection at a 5 mg/kg dose, the antibody concentrations in mice ELF were below PRNT90 value throughout, and were about 50-fold lower than that in the serum. In cynomolgus monkeys administrated with a single dose through inhalation, the antibody concentration in ELF remained high within 3 days. No drug-related safety concerns were observed in the studies. CONCLUSIONS: The study demonstrated that nebulized neutralizing antibody delivery though inhalation could be a more efficient and efficacious alternative approach for treating COVID-19 and other respiratory infectious diseases, and warrants further evaluation in clinical studies.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Feasibility Studies , Humans , Macaca fascicularis , Mice
8.
Advanced Materials ; 34(21):2270160, 2022.
Article in English | Wiley | ID: covidwho-1866500

ABSTRACT

Nanoparticle Vaccines In article number 2200443, Liangzhi Xie, Chengfeng Qin, and co-workers develop a novel bivalent nanoparticle vaccine that confers protection against infection of multiple SARS-CoV-2 variants and Streptococcus pneumoniae. This universal polysaccharide?protein-conjugated vaccine platform provides a powerful tool to fight against cocirculating viral and bacterial pathogens worldwide.

9.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1820439

ABSTRACT

With the emergence and rapid spread of new pandemic variants, especially variants of concern (VOCs), the development of next-generation vaccines with broad-spectrum neutralizing activities is of great importance. In this study, SCTV01C, a clinical stage bivalent vaccine based on trimeric spike extracellular domain (S-ECD) of SARS-CoV-2 variants Alpha (B.1.1.7) and Beta (B.1.351) with a squalene-based oil-in-water adjuvant was evaluated in comparison to its two corresponding (Alpha and Beta) monovalent vaccines in mouse immunogenicity studies. The two monovalent vaccines induced potent neutralizing antibody responses against the antigen-matched variants, but drastic reductions in neutralizing antibody titers against antigen-mismatched variants were observed. In comparison, the bivalent vaccine SCTV01C induced relatively higher and broad-spectrum cross-neutralizing activities against various SARS-CoV-2 variants, including the D614G variant, VOCs (B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.1.529), variants of interest (VOIs) (C.37, B.1.621), variants under monitoring (VUMs) (B.1.526, B.1.617.1, B.1.429, C.36.3) and other variants (B.1.618, 20I/484Q). All three vaccines elicited potent Th1-biased T-cell immune responses. These results provide direct evidence that variant-based multivalent vaccines could play important roles in addressing the critical issue of reduced protective efficacy against the existing and emerging SARS-CoV-2 variants.

10.
Adv Mater ; 34(21): e2200443, 2022 May.
Article in English | MEDLINE | ID: covidwho-1763176

ABSTRACT

The ongoing COVID-19 pandemic caused by SARS-CoV-2 has led to millions of deaths worldwide. Streptococcus pneumoniae (S. pneumoniae) remains a major cause of mortality in underdeveloped countries. A vaccine that prevents both SARS-CoV-2 and S. pneumoniae infection represents a long-sought "magic bullet". Herein, a nanoparticle vaccine, termed SCTV01B, is rationally developed by using the capsular polysaccharide of S. pneumoniae serotype 14 (PPS14) as the backbone to conjugate with the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. The final formulation of conjugated nanoparticles in the network structure exhibits high thermal stability. Immunization with SCTV01B induces potent humoral and Type 1/Type 2 T helper cell (Th1/Th2) cellular immune responses in mice, rats, and rhesus macaques. In particular, SCTV01B-immunized serum not only broadly cross-neutralizes all SARS-CoV-2 variants of concern (VOCs), including the most recent Omicron variant, but also shows high opsonophagocytic activity (OPA) against S. pneumoniae serotype 14. Finally, SCTV01B vaccination confers protection against challenges with the SARS-CoV-2 mouse-adapted strain and the original strain in established murine models. Collectively, these promising preclinical results support further clinical evaluation of SCTV01B, highlighting the potency of polysaccharide-RBD-conjugated nanoparticle vaccine platforms for the development of vaccines for COVID-19 and other infectious diseases.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta/metabolism , Mice , Nanoparticles/chemistry , Pandemics , Polysaccharides , Rats , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Streptococcus pneumoniae/metabolism
11.
Antimicrob Agents Chemother ; 65(11): e0106321, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1398568

ABSTRACT

SCTA01 is a novel monoclonal antibody with promising prophylactic and therapeutic potential for COVID-19. This study aimed to evaluate the safety, tolerability, pharmacokinetics (PK) and immunogenicity of SCTA01 in healthy adults. This was a randomized, double-blind, placebo-controlled, dose escalation phase I clinical trial. Healthy adults were randomly assigned to cohort 1 (n = 5; 3:2), cohort 2 (n = 8; 6:2), cohort 3, or cohort 4 (both n = 10; 8:2) to receive SCTA01 (5, 15, 30, and 50 mg/kg, respectively) versus placebo. All participants were followed up for clinical, laboratory, PK, and immunogenicity assessments for 84 days. The primary outcomes were the dose-limiting toxicity (DLT) and maximal tolerable dose (MTD), and the secondary outcomes included PK parameters, immunogenicity, and adverse events (AE). Of the 33 participants, 18 experienced treatment-related AEs; the frequency was 52.0% (13/25) in participants receiving SCTA01 and 62.5% (5/8) in those receiving placebo. All AEs were mild. There was no serious AE or death. No DLT was reported, and the MTD of SCTA01 was not reached. SCTA01 with a dose range of 5 to 50 mg/kg had nearly linear dose-proportional increases in Cmax and AUC parameters. An antidrug antibody response was detected in four (16.0%) participants receiving SCTA01, with low titers, between the baseline and day 28, but all became negative later. In conclusion, SCTA01 up to 50 mg/kg was safe and well-tolerated in healthy participants. Its PK parameters were nearly linear dose-proportional. (This study has been registered at ClinicalTrials.gov under identifier NCT04483375.).


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Monoclonal/adverse effects , Antibodies, Viral , Double-Blind Method , Humans
12.
Natl Sci Rev ; 8(3): nwaa297, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-990776

ABSTRACT

Receptor recognition and subsequent membrane fusion are essential for the establishment of successful infection by SARS-CoV-2. Halting these steps can cure COVID-19. Here we have identified and characterized a potent human monoclonal antibody, HB27, that blocks SARS-CoV-2 attachment to its cellular receptor at sub-nM concentrations. Remarkably, HB27 can also prevent SARS-CoV-2 membrane fusion. Consequently, a single dose of HB27 conferred effective protection against SARS-CoV-2 in two established mouse models. Rhesus macaques showed no obvious adverse events when administrated with 10 times the effective dose of HB27. Cryo-EM studies on complex of SARS-CoV-2 trimeric S with HB27 Fab reveal that three Fab fragments work synergistically to occlude SARS-CoV-2 from binding to the ACE2 receptor. Binding of the antibody also restrains any further conformational changes of the receptor binding domain, possibly interfering with progression from the prefusion to the postfusion stage. These results suggest that HB27 is a promising candidate for immuno-therapies against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL